"大数据时代"下慢性病防控新模式的研究进展

时间:2022-12-24 18:00:08   热度:37.1℃   作者:网络

本文来源:解夕黎,孙明,贾雯涵,等. "大数据时代"下慢性病防控新模式的研究进展[J]. 中国全科医学, 2022, 25(22): 2811-2814.(点击文题阅读原文):backhand_index_pointing_left:

研究提要:

1、“大数据”对慢性病防控的重要意义;

2、将“大数据”运用于慢性病风险预测及慢性病防控平台建设所取得的效果;

3、有助于提高模型解释力和优化平台建设的建议。

01

“大数据 ” 在慢性病防控中的意义

传统慢性病管理模式仍存在一定不足:(1)人群监测范围受限,监测的危险因素种类少,监测数据的准确性、连续性和完整性难以保证;(2)预防和管理策略多具有通用性,在制定和实施时未能充分考虑个体需求的差异;(3)个体自我管理能力较弱、缺乏慢性病相关知识、依从性较差,导致健康干预效果减弱。而“大数据”的利用成为改变现状、突破“瓶颈”的关键点。

在“大数据时代”,数据已成为世界各国的基础性战略资源。做好数据治理不仅有助于提高政府的社会治理能力,还有利于提升公共服务水平。此外,“大数据”技术的产生与发展也推动了信息技术的飞速发展。移动健康管理设备可通过人体体征传感器获取个体的健康“大数据”,并将其上传至云平台,进而使患者/医务人员能够随时随地对自身/患者的健康状况进行监测,有效地改善了传统慢性病管理模式下,人群健康数据可获得性水平较低、连续性不足和时效性较差等问题。除了可助益个体水平上的慢性病防控外,医疗健康“大数据”的应用还能为群体水平上的慢性病防控带来新模式,助力实现慢性病群体特征刻画、慢性病发展预测等,进而可促进慢性病并发症风险防范和预警效果、慢性病防治工作水平的提升。

02

“大数据 ”在慢性病风险预测中的应用

作为分析“大数据”价值的关键技术,机器学习技术使研究人员能够更好地分析健康医疗“大数据”复杂多变的内部联系,已被广泛应用于数据挖掘、病因探索等领域,在疾病早期预测与诊断及预后评估中发挥着重要作用。

周阳等选取了约20万份居民健康档案,通过机器学习中的逻辑回归、随机森林和支持向量机算法建立了3种高血压风险预测模型,并对3种模型在高血压风险预测中的应用价值进行比较、分析。研究结果显示,基于支持向量机建立的高血压风险预测模型的预测性能最为优异,预测准确率达87%。

GUIDA等利用逻辑回归算法构建了基于循环蛋白生物标志物的肺癌风险预测模型。相比于传统基于吸烟情况建立的肺癌风险预测模型,该模型的灵敏度和特异度均得到明显改善。

REZAEE等通过递归特征消除法(RFE)自动筛选用于预测的最佳变量集构建了具有良好预测性能和可重复性的异质性心血管疾病风险预测模型,该模型对冠状动脉疾病、卒中的区分能力均处于中等水平。

而在人工智能技术探索的道路上,更多高性能、灵活性更强的机器学习算法被开发出来。

WANG等利用纵向监测病例随访队列信息数据库,基于长短时记忆循环神经网络(RNN)开发了一种多疾病风险预测模型,该模型能够较好地预测患者未来发生疾病的风险。我国学者黄旭等采用随机森林、梯度提升决策树和极端梯度提升 3 种集成学习算法对慢性病进行分类,将多疾病风险预测问题转化为多标签分类问题,并进一步建立了神经网络模型,以实现对多种疾病风险的预测。

CHOI等考虑了逐步逻辑回归(SLR)等变量选择和预测方法对2型糖尿病风险预测模型性能的影响,以及单核苷酸多态性(SNP)数据集对风险预测效能的影响,发现包含人口统计变量和遗传变量的预测模型与仅包含人口统计变量的预测模型相比,在预测2型糖尿病发生上更准确。MARS等评价了全基因组多基因风险评分(PRS)在冠心病、2型糖尿病等5种慢性病风险预测中的附加价值,并评估了不同 PRS水平下个体的终生患病风险及不同PRS水平对疾病发病和风险预测的影响。

目前,国内外相关风险预测模型中变量的种类较为局限,模型构建时使用的算法较为单一。同时,训练数据集和测试数据集的代表性不足,也可能导致研究结果的论证强度受限。未来在开展慢性病风险预测研究时应注意以下3点:(1)将膳食、睡眠等健康相关因素和生物标志物纳入模型;(2)合理选择建模方法,提高模型的实用价值;(3)利用针对不同地区、人群开展的大型队列研究数据对模型进行验证。此外,还应注重对慢性病风险预测模型的转化及推广,进而助力实现慢性病的早期发现、慢性病防控“关口前移”。疾病风险预测模型的开发也为慢性病综合防控平台的搭建奠定了坚实的基础。

03

“大数据”慢性病综合防控平台的建设

上海市

基于3 000多万份居民电子健康档案数据和100亿条临床诊疗记录,建立了“上海健康云”信息平台,该平台不仅能够为居民提供慢性病管理、预约挂号、预防接种、家庭医生等线上服务,还支持通过个体健康风险评估细化对慢性病患者的分类管理,可更好地为居民提供覆盖全生命周期的慢性病健康服务。徐汇区将营养干预与“互联网+”深度融合,基于糖尿病患者的健康数据研发并启用了“合理营养自评系统”和“营养门诊咨询管理系统”,两大系统的应用使糖尿病患者的血糖、血脂水平得到了有效改善,并为系统化的慢性病营养干预模式的建立奠定了基础;闵行区利用居民电子健康档案开展糖尿病等疾病患者的筛查、管理及干预工作,通过采用基于“大数据”构建的、具备自动评分与识别功能的糖尿病筛查评分系统对辖区居民进行糖尿病筛查,目前已使近万名糖尿病前期患者得到了及时治疗。

浙江省宁波市鄞州区

基于“互联网+健康”推出了系列管理工具。自2016年起,逐步开发和使用的“大数据”平台也为高脂血症、糖尿病及高血压等慢性病的筛查和干预提供了更加科学、精确的依据,使慢性病管理工作的效率及效果得到了明显的提高。然而,不同地区在工作开展机制、资源禀赋、经济基础和适宜技术开展情况等方面存在差异,要建立符合自身特色的慢性病综合防控平台还需要不断探索。

许多学者也开展了慢性病综合防控平台搭建研究。

冯阳等通过整合互联网、APP、“大数据”云计算等技术,实现了各级医疗卫生机构患者健康信息的交流共享,并结合临床经验、专业知识构建了慢性病健康网,开发了“以患者为中心”、基于移动互联的慢性病个体化管理与诊疗平台。

陈平等开发了基于“大数据”技术和医疗线上到线下(O2O)模式的“慢性病防控云平台”。“慢性病防控云平台”不仅可以提供“南京都市圈”中各医疗卫生机构的诊疗信息,还可实现对慢性病高危人群及患者的远程监测与管理。此外,“慢性病防控云平台”还能够收集患者生命体征、就诊信息等方面的数据,并支持采用谷歌Word2Vec模型、BP神经网络模型等对输入的数据进行自然语言处理和语义识别,最终实现智能应答。

KYRIAZAKOS等提出打造一个基于云的开源电子健康平台——eWALL。“eWALL”面向慢性病患者和衰弱的老年人群,主要由“eWALL家庭”和“eWALL云”两部分组成。“eWALL家庭”承载了整体感知功能,负责收集环境、生活、健康等方面的相关参数,上传、储存并追踪患者各项数据;“eWALL云”负责管理和分析来自患者家庭的数据。“eWALL”还提供了多种应用程序,以帮助患者进行自我健康管理,有效地减轻了患者及其家庭的负担。

基于“大数据”的慢性病综合防控平台覆盖范围广、服务类型多,能够提升慢性病健康管理系统整体效益,充分发挥医疗健康“大数据”的价值,让优质的慢性病防控资源惠及更多患者,为慢性病及精准医疗领域研究深入开展提供了不竭动力。今后,应进一步根据国家各项政策措施,扩大基于“大数据”的慢性病综合防控平台的推广和使用范围,充分调动慢性病患者的参与积极性,进而提高其对慢性病综合防控平台的知晓率和使用率。并且,随着信息化技术的发展,应不断完善、创新平台建设,提高慢性病患者健康相关数据上传的实时性,优化平台/APP的服务功能和细节问题,努力实现对患者全生命周期电子健康记录的采集、储存和管理,最终助力数字医疗发展。    

小结:

尽管我国慢性病防控策略与技术经过了多年的研究与发展,但慢性病仍是危害我国居民身体健康的重大公共卫生问题。若要进一步提升慢性病防治工作水平,最主要的就是顺应时代变化和发展,结合“大数据时代”背景下的多种新兴信息技术,搭建起包括遗传与环境交互作用效应评估、生活/行为方式评估、疾病风险预警评估等功能在内的智能化慢性病综合防控平台。慢性病综合防控平台通过对不同人群(包括健康人群、高危人群及慢性病患者)的健康医疗数据进行采集,并利用基于数据挖掘、深度机器学习、人工神经网络等技术构建的慢性病风险预测模型,可识别出个体发生慢性病的危险因素,为健康人群提供健康生活、行为方式等方面的指导,对高危人群发生慢性病的危险因素进行监测、评估和干预,为慢性病患者提供精准化的治疗方案及健康监测服务。总之,“大数据时代”的到来为慢性病综合防控带来了更多的可能。

: , 。   视频 小程序 赞 ,轻点两下取消赞 在看 ,轻点两下取消在看

上一篇: 2022年最新诊疗规范 | 强直性脊柱炎...

下一篇: Movement Disord:18F-...


 本站广告